Algebra 2

The Polynomial Review

Name: KEY

What is the remainder when $p(x) = x^6 - 2x^3 + x - 1$ is divided by (x + 1)? 1.)

- -3a.)
- -1**b**.)
- 1

1-11-33-2

If $p(x) = x^3 - 2x^2 + 9x - 2$, which of the following statement(s) is/are true? 2.)

- x-3 is a factor of p(x)i.
- ii. x = 3 is a root of p(x)
- p(3) = 34iii.
- p(-3) = 34
- i only
- iii only
- i and ii only
- i and iii only d.)
- e.) i and iv only

How many real roots must the following equation have? 3.)

$$x^4(x^2-4)+9(x^2-4)=0$$

- a.)

- Determine the quotient when $x^3 2x^2 9$ is divided by (x 3)? 4.)
- $x^2 + 5x + 15$ a.)
- $x^2 + x 6$ b.)
- x^2-5x+6 c.)
- $x^2 + x + 3$

What are the zeros of the polynomial function $f(x) = 2x^3 - 8x^2 + 6x$? 5.)

- x = 0.1.3a.)
- x = 1, 2, 3b.)
- x = 0, -1, -3c.)
- x = 0, 1, -4d.)

- $2x(x^2-4x+3)=0$
- 2x(x-3)(x-1)=0
 - x = 0 x = 3 x = 1

- Find the remainder when $f(x) = x^6 + 5x^5 x^3 + x 6$ is divided by (x + 1). 6.)
- 0 a.) -10b.) -1
- 1 5 0 -1 0 1 -6 -1 -4 4 -3 3 -4
- -12
- The polynomials $p(x) = x^4 + 5x^3 2x^2 24x$ has a zero at x = 2. Factor p completely. 7.)
- p(x) = x(x+2)(x+3)(x+4)a.)
- p(x) = (x-2)(x-3)(x-4)b.)
- p(x) = x(x+2)(x-3)(x-4)c.)
- d.)
- p(x) = x(x-2)(x+3)(x+4)
 - - $\times (x-2) (x+3)(x+4)$

2 14 24

- For the given polynomials function, $f(x) = -5x^2(x-8)(x+2)^3$, find the zeros of the function and state the 8.) multiplicity of each.
- -2, multiplicity 1; 2, multiplicity 1; 8, multiplicity 1
- -2, multiplicity 3; 0, multiplicity 2; 8, multiplicity 1; 2, multiplicity 1
- -2, multiplicity 1; 0, multiplicity 2; 8, multiplicity 1 -2, multiplicity 3; 0, multiplicity 2; 8, multiplicity 1
- For the given polynomials function, $f(x) = x^3 + 6x^2 x 6$, find the zeros of the function and state the 9.) $x^2(x+6)$ -1(x+6) multiplicity of each.
- -1, multiplicity 1; 1, multiplicity 1; 6, multiplicity 1
 - -6. multiplicity 2; 1, multiplicity 1
- -6, multiplicity 1; -1, multiplicity 1; 1, multiplicity 1
 - -6, multiplicity 3; -1, multiplicity 1; 1, multiplicity 1
- (x+6)(x2-1) (x+0)(x+1)(x-1)
- The equation that would best model the following graph is: 10.)
- $f(x) = (x+3)^2(x^2-1)$ a.)
- f(x) = (x+3)(x-1)(x+1)
- $f(x) = x^4 + 6x^3 + 9x^2 6x 9$ c.)
- $f(x) = -(x+3)^2(x^2-1)$
- (x+3)(x+3) (x+1)(x-1) $(x+3)^{2}(x^{2}-1)$

- The function f(x) has a zero of 2 with a multiplicity 3. We know... 11.)
- Since 3 is an odd number, the graph touches but does not cross the x axis.
- Since 3 is an odd number, the graph crosses the x axis.
- Since 2 is an even number, the graph touches but does not cross the x axis.
- Since 2 is an even number, the graph crosses the x axis. d.)

- 12.) The function f(x) has a zero of 3 with a multiplicity 2. We know...
- a.) Since the zero is 3, the graph crosses the y axis at 3.
- b.) Since the zeros is 3, the graph goes up to the right.
- c.) Since the multiplicity is 2, the graph crosses the x axis.
- d.) Since the multiplicity is 2, the graph touches but does not cross the x axis.
- Using the polynomial, $f(x) = -2x^3 + 4x 8$, explain how the degree and leading coefficient will affect the end behavior.
- Because the degree is odd, the ends will point in opposite direction, and because the leading coefficient is negative the graph will point down on the right.
- b.) Because the degree is odd, the ends will point in opposite direction, and because the leading coefficient is negative the graph will point up on the right.
- c.) Because the degree is odd, the ends will point in the same direction, and because the leading coefficient is negative the graph will point down on the right.
- d.) Because the degree is odd, the ends will point in the same direction, and because the leading coefficient is negative the graph will point up on the right.
- 14.) Determine the quartic function that is obtained from the parent function $y = x^4$ after the sequence of transformations.
 - a.) A vertical stretch by a factor of 3; a reflection across the x-axis; and a horizontal translation of 3 units right; and vertical translation of 2 units down

$$y = -3 (x-3)^4 - 2$$

b.) A vertical shrink by a factor of $\frac{1}{3}$; a horizontal translation of 2 units left; and a vertical translation of 6 units up.

15.) Divide using the synthetic division. Rewrite the polynomial function in factored form.

$$(x^{3} + 4x^{2} + 14x + 20) \div (x + 2)$$

$$\Rightarrow \frac{-2}{1} \xrightarrow{-2} \frac{1}{2} \xrightarrow{-4} \frac{14}{10} = (x + 2) \times (x + 2)$$

$$= (x + 2) \times (x + 2) \times (x + 2)$$

$$= (x + 2) \times (x + 2) \times (x + 2)$$

$$= (x + 2) \times (x + 2) \times (x + 2)$$

$$= (x + 2) \times (x + 2) \times (x + 2)$$

Find all zeros of the polynomials $f(x) = x^4 - 6x^3 + 25x^2 - 96x + 144$ given x = 3 is a zero of the function. 16.)

$$x^3 - 3x^2 + 16x - 48 = 0$$

$$x^{2}(x-3)+16(x-3)=0$$

$$x = 3 \qquad x^2 = -16$$

- Zeros: 3, 3, 4i, -4i
- A complete graph of a polynomial function g is shown at the right. 17.)
 - a.) Explain: BOTH ENDS OF GLAPH

GO IN SAME DIERCTICA

- Is the leading coefficient of g(x)b.) positive or negative? Positive. Explain: <u>END BEHAMOR</u> OF GRAPH IS GOING TOWARD POSITIVE INFINITY
- c.)
- d.)
- Write the polynomial function of lowest degree in factored form for the following graph. 18.)

$$f(x) = -(x+3)(x-2)^3$$

Scanned by CamScan

Using what you know about zeros, multiplicity, and end behavior draw a sketch of the graph of the following 19.) function:

$$f(x) = 3(x-2)^{3}(x+4)^{2}$$

$$x = 2 \quad x = -4$$

$$x = 2 \quad x = -4$$

$$x = 2 \quad Bource$$
ASS

DEGREE: 5 (COD) L.C. : 3 (POSITIVA)

Find all roots for $f(x) = x^3 + x^2 - 4x + 6$ given (x + 3) is a factor of the polynomial.

Given the graph of the polynomial fill in the blanks below. 21.)

Degree: <u>EVEN</u>

Lead Coefficient: Positive

End Behavior: $as x \to \infty, f(x) \to \underline{\hspace{1cm}}$

$$as x \to -\infty, f(x) \to \underline{\hspace{1cm}}$$

Relative Min: (-4, -6) (4,0)

Intervals Increasing: (-4,1)u(4,00)

Intervals Decreasing: $(-\infty, -4)$ u (1, 4)

22.)	Given $f(x) = x^7 + 4x^6 - 2x^5 + x^4 - 2x^3 - 2x^2 - 3x + 5$ complete the table below with the possible
	combinations of real zeros and complex zeros.

Real Zeros	Complex Zeros	Total Zeros
7	0	7
5	2	7
3	4	7
0 /	6	7

23.) A jewelry box has a length that is 2 inches longer than the width and a height that is 1 inch smaller than the width. The volume of the box is 140 cubic inches. Write a polynomial function in standard form that models the above information? (Hint: V = lwh)

the above information? (Hint:
$$V = lwh$$
)

LENGTH: $\times + 2$
 $V = l \cdot \omega \cdot h$
 $V = l \cdot \omega \cdot h$

24.) Factor the following expressions:

a.)
$$x^3 - 8$$

 $\times \times \times \times$ 222

b.) $27x^3 - 125$
 $3 \times 3 \times 3 \times 555$

c.) $8x^3 + 1$
 $2 \times 2 \times 2 \times 111$
 $(3 \times -5) \times (9 \times^2 + 15 \times + 25)$
 $(2 \times +1) \times (4 \times^2 - 2 \times +1)$

25.) Solve.

a.)
$$x^4 - 23x^2 = 50$$

 $x^4 - 23x^2 - 50 = 0$
 $(x^4 - 25x^2) + (2x^2 - 50) = 0$
 $x^2(x^2 - 25) + 2(x^2 - 25) = 0$
 $(x^2 - 25)(x^2 + 2) = 0$
 $(x + 5)(x - 5)(x^2 + 2) = 0$
 $x + 5 = 0$ $x - 5 = 0$ $x^2 + 2 = 0$
 $x = -5$ $x = 5$ $x = 5$

b.)
$$2x^3 - 9x^2 = -9x$$

 $2x^3 - 9x^2 + 9x = 0$
 $\times (2x^2 - 9x + 9) = 0$
 $\times [2x^2 - 6x - 3x + 9] = 0$
 $\times [2x(x-3) - 3(x-3)] = 0$
 $\times (x-3)(2x-3) = 0$
 $\times = 0$ $x = 0$ $x = 3$

Scanned by CamScanner