6.)
$$f(x) = \frac{x^2 - 9}{x + 3} = \frac{(x - 3)^2}{(x - 3)^2}$$

X+3=0

Hole(s): (-3, -G) = x-3

Vertical Asymptote: __~A

Horizontal Asymptote: ~~

Domain: $(-\infty, -3) \omega(-3, \infty)$

Range: (-∞, -6) u (-6, ∞)

End Behavior:

AS
$$x \rightarrow \infty$$
, $f(x) \rightarrow \infty$
AS $x \rightarrow -\infty$, $f(x) \rightarrow -\infty$

SUMMARY

What is an asymptote?

How do you decide on what the vertical asymptote(s) is/are going to be?

How do you decide on what the horizontal asymptote(s) is/are going to be?

When does a hole occur in a rational function?

How do you locate the intercepts of a rational function?

Scanned by CamScanner