Algebra 2
Chapter 11 - Probability
11.1-11.2 All Probability Practice

Name: \qquad

Use the image on the right to answer the following questions:

1.) If you spin the spinner 1 time, what is the probability that it would land on a grey piece?
2.) If you spin the spinner 1 time, what is the probability that it would land on a black piece?
3.) If you spin the spinner 2 times, what is the probability that it would land on a white piece and then a black piece?
4.) If you spin the spinner 2 times, what is the probability that it would land on a black piece and then a grey piece?

Date: \qquad Per: \qquad

Use the diagram of shapes on the left to answer the following questions:

5.) If you were to select one shape at random from the array, what is the probability that it will be a circle?
6.) If you were to select 1 shape at random from the array, what shape do you have the greatest probability of selecting
7.) Which shape has a probability of $8 / 25$ of being selected?

Decide whether to use permutations or combinations \& then find the number of possibilities.
8.) A team of 8 basketball players needs to choose a captain and co-captain
9.) The student body of 60 students wants to elect four representatives.
10.) There are 20 applicants for three jobs: computer programmer, software tester, and manager.
11.)The batting order for eight players on a 15 person team
12.) A team of 16 field hockey players needs to choose a captain and co-captain.
13.) There are 180 people at a meeting. They each give a Valentine's Day card to everyone else. How many cards were given?

Find the number of possible outcomes for each scenario.
14.) A coffee shop offers small, medium, and large sizes. Customers can choose between French roast, Italian roast, and American roast.
15.) A new car is available in a sedan model and a hatchback model. It is available in red, white, green, or black.

Find the probability.

16.) There are 4 girls and 5 boys in the class. The teacher needs to pick two students to present at the board. Find the probability that the teacher picks a boy for the first student and a girl for the second student.
17.)A bag contains four red marbles, four blue marbles, eight green marbles, eight yellow marbles, and 6 black marbles. Find the following probabilities:
a.) P(Green then Blue) *With Replacement*
b.) $P($ Red then Blue then Green $)$
c.) $P($ Yellow and Yellow)
d.) P(Black then Green) *With Replacement*
e.) $P($ Red then Blue then Green then Yellow then Black)
18.) You select two cards from a standard shuffled deck of 52 cards. Find the probability of the following:
a.) P (Red card then Black card)
b.) P (King then Queen then Jack)
c.) P (even number card or red 5)
d.) $P($ face card then another face card)
e.) $\mathrm{P}($ Red 13 then Black Ace or 7)
f.) P(odd number card or Jack AND 3 of hearts)
g.) P (two prime number cards)
19.) A die is rolled and the spinner is spun. Find the probability of each:
a.) $P(1$ and $A)$
b.) P(odd and B)
c.) P (composite and C)
d.) P (prime and B)

20.) Out of 19 students surveyed, 2 students did not own an Xbox or PS3, 6 students owned a PS3 and an Xbox, and 14 students owned a PS3. Use the Venn diagram below to show your work.

How many students owned the following:
a.) An Xbox: \qquad
b.) Only a PS3: \qquad
c.) Both consoles: \qquad

21.) In a recent survey of 22 Dundee Crown students, 3 of them did not like soccer or basketball. 7 said they only like basketball. None said they like both. Use this situation to answer the following:

How many students liked:
a.) Only Soccer: \qquad
b.) Soccer or Basketball: \qquad
c.) Soccer and Basketball: \qquad
22.) Matthew was ordering pizza for his 47 friends. He took a survey to see who like pepperoni, cheese, and sausage. 3 people said they liked all three, 5 said cheese and sausage, 8 said pepperoni and cheese, and 3 said pepperoni and sausage. 5 people did not choose any of the three. 10 total like pepperoni and 14 liked sausage. How many liked:
a.) Cheese: \qquad
b.) Just Cheese: \qquad
c.) Just Sausage: \qquad

