Name:		

Date:	Per:	

1) Farmer Joe can plant up to 8 acres of land with wheat and barley. He can earn \$5000 for every acre of wheat and \$3000 for every acre of barley. His use of necessary pesticide is limited by federal regulations to 10 gallons for his entire 8 acres. Wheat requires 2 gallons of pesticide for every acre planted and barley requires just 1 gallon per acre. How many acres of each crop should Farmer Joe plant to maximize his profit?

								1	
Define the variables:									
X =									
Y =									
Constraints:									
Objective Function:									
Critical Points:									

Conclusion: _____

2) As a receptionist for a veterinarian, one of Mrs. Barkman's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs \$55 and most surgeries cost \$125, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day.

Define the variables:																	
X =	⊢					+	+				-		-	+	-	-	+-
Y =																	
• =	⊢												+		+	+	
Constraints:	⊢			-	+	+	-	_	+	-	+	-	+	+	+	+	+
	L				_	+	_			_		_	_	_	_	_	
	⊢			+	+	+	+	-	+	\rightarrow	+	+	+	+	+	+	+
					\neg	+	+		\uparrow		\neg	\neg	+	+	+	+	
	L				_	_				_		_	_		_	_	
Objective Function:	⊢					+	+		+				+	-	_	-	+-
Critical Points:																	

Conclusion:

3) Bob the Builder has upgraded to the big league and now builds tool sheds. He uses 10 sheets of dry wall and 15 studs for a small shed and 15 sheets of dry wall and 45 studs for a large shed. He has available 60 sheets of dry wall and 135 studs. If Bob makes \$390 profit on a small shed and \$520 on a large shed, how many of each type of building should Bob build to maximize his profit?

Define the variables:										
X =	E									
Y =	E									
	L									
Constraints:	L									
	E									_
	E									
										_
										_
Objective Function:	E									

Critical Points:

Conclusion:

4) An agriculture company has 80 tons of type I fertilizer and 120 tons of type II fertilizer. The company mixes these fertilizers into two products. Product X requires 2 parts of type I and 1 part of type II fertilizers. Product Y requires 1 part of type I and 3 parts of type II fertilizers. If each product sells for \$2000, what is the maximum revenue and how many of each product should be made and sold to maximize revenue?

Define the variables:	H	_	_	_	+	_	_	_	-	-	-			_		_	-
Define the variables.		\rightarrow	_		+	+	_	_	-	-	-		_	-	_	-	-
N .		_	_		_			_	_	_			_				
X =																	
Y =																	
Constraints:																	
					\uparrow				1	1							
										1							\square
																	\square
					1				1	1							$\neg \neg$
					+	+			1	+						+	+
				+	+	+		-	+-	+	-					+	+-
Objective Function:																	

Critical Points:

Conclusion: