Algebra 2

1.4 - Linear Programming Practice 1

Name: \qquad
Date: \qquad Per: \qquad

1) Farmer Joe can plant up to 8 acres of land with wheat and barley. He can earn $\$ 5000$ for every acre of wheat and $\$ 3000$ for every acre of barley. His use of necessary pesticide is limited by federal regulations to 10 gallons for his entire 8 acres. Wheat requires 2 gallons of pesticide for every acre planted and barley requires just 1 gallon per acre. How many acres of each crop should Farmer Joe plant to maximize his profit?

Define the variables:
$\mathbf{X}=$ \qquad
$\mathbf{Y}=$ \qquad

Constraints:

Objective Function:

\qquad

Critical Points:

Conclusion: \qquad
2) As a receptionist for a veterinarian, one of Mrs. Barkman's tasks is to schedule appointments. She allots 20 minutes for a routine office visit and 40 minutes for a surgery. The veterinarian cannot do more than 6 surgeries per day. The office has 7 hours available for appointments. If an office visit costs $\$ 55$ and most surgeries cost $\$ 125$, find a combination of office visits and surgeries that will maximize the income the veterinarian practice receives per day.

Define the variables:
$X=$ \qquad
$\mathbf{Y}=$ \qquad

Constraints:

Objective Function:

\qquad
Critical Points:

Conclusion: \qquad
3) Bob the Builder has upgraded to the big league and now builds tool sheds. He uses 10 sheets of dry wall and 15 studs for a small shed and 15 sheets of dry wall and 45 studs for a large shed. He has available 60 sheets of dry wall and 135 studs. If Bob makes $\$ 390$ profit on a small shed and $\$ 520$ on a large shed, how many of each type of building should Bob build to maximize his profit?

Define the variables:

$$
X=
$$

\qquad
$\mathbf{Y}=$ \qquad

Constraints:

Objective Function: \qquad

Critical Points:

Conclusion: \qquad
4) An agriculture company has 80 tons of type I fertilizer and 120 tons of type II fertilizer. The company mixes these fertilizers into two products. Product X requires 2 parts of type I and 1 part of type II fertilizers. Product Y requires 1 part of type I and 3 parts of type II fertilizers. If each product sells for $\$ 2000$, what is the maximum revenue and how many of each product should be made and sold to maximize revenue?

Define the variables:
$X=$ \qquad
$\mathbf{Y}=$ \qquad

Constraints:

Objective Function: \qquad
Critical Points:

Conclusion: \qquad

