1.) A rock is thrown through the air by a large catapult. The path of the boulder can be modeled by the quadratic equation s(t) = -16t² + 96t + 128, where s(t) represents the rock's height (in feet) after t seconds. a.) When does the rock reach its maximum height? b.) What is the maximum height? c.) Write the equation in vertex form. d.) When will the rock land?	Algebr Final E	a 2 xam Review – Semester 1 – 3415		Name: Date:	Period:
	1.)		_	th of the boulder ca	n be modeled by the quadratic
c.) Write the equation in vertex form. d.) When will the rock land?	a.)	When does the rock reach its maximum height?	b.)	What is the max	imum height?
	c.)	Write the equation in vertex form.	d.)	When will the ro	ock land?

Define variables, write a system of equations and then solve.

2.) An instructor wants to write a quiz with 9 questions where each question is worth 3, 4, or 5 points based on difficulty. He wants the number of 3-point questions to be twice as many the number of 5-point questions, and he wants the quiz to be worth a total of 35 points. How many 3, 4, and 5 point questions could there be?

3.)
$$(5-2i)(3i+4)$$

4.)
$$(4i+3)^2$$

$$5.) \qquad \frac{4-i}{2i+3}$$

6.)
$$(2x^2-4x+7)-4(5-6x^2+3)-(11x^2-3)$$

7.)
$$(2x-5y)^2$$

8.)
$$(5a^3+7)-4(2-6a^2+3a)-4(2a^3-8)$$

9.)
$$(3w-2)(2w^2-7w-2)$$

If
$$f(t) = 4t^2 - 2t + 7$$
; find $f(t+5)$

11.) Evaluate.

If
$$f(y) = -2y^2 - 2y$$
; find $f(y-3)$

Factor Completely.

12.)
$$2n^4 - 26n^2 + 72$$

13.)
$$27m^3 - 8n^3$$

14.)
$$16x^4 - 81$$

$$15.) \qquad 6m^3 - 33m^2 + 24m$$

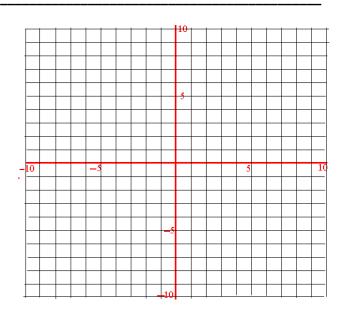
Solve each of the following using the method of your choice.

16.)
$$-3(2x+4)^2=36$$

17.)
$$4x^2 - 5x + 3 = 6x - 4$$

$$18.) 2x^4 - 3x^3 + 16x - 24 = 0$$

$$19.) c^5 - 125c^2 = 0$$


20.)	Find the remaining zeros for the polynomial given	(x -	1) is a factor of	of $P(x) = x$	$x^4 - 7$	$7x^3 + 1$	$17x^2 -$	17x +	6.

21.) Find all roots for the following polynomial, $j(a) = 2a^3 - 2a^2 + 6a - 6$

Roots:			

22.) Solve Algebraically and Graphically.

$$y = x^2$$
$$y + x^2 = 8$$

Solutions: _____

Solutions: _____

23.)	Find the value of k given that $(x-3)$ is a factor of $p(x) = 2x^3 - kx - 42$.
------	---

24.) A grasshopper leaps from a short table (we'll name him J. Cricket) and its path through the air is modeled by the following equations

$$h(x) = -x^2 + 12x + 13$$

AND

$$h(x) = -(x-6)^2 + 49$$

where height (h) is measured in inches, and horizontal distance traveled (x) is also measured in inches.

- a.) How tall is the short table that the grasshopper leaps from?
- b.) How far has the grasshopper traveled horizontally when it reaches its maximum height?
- c.) What is the maximum height of the grasshopper?
- d.) How high is the grasshopper after it has traveled 3 inches horizontally?

e.) How far has the grasshopper traveled horizontally when it is at a height of 33 inches?

f.) When the grasshopper lands, how far has it traveled horizontally?

25.	For the given po	vnomial state the	following	information
25.	roi the given po	ynomiai state tiit	e ionowing	miormation

Degree:

Even or Odd

Lead Coefficient:

Positive or Negative

Zero(s):

Factor(s):

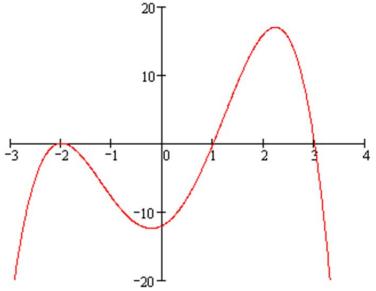
Equation:

Rel. Min:

Rel. Max:

Intervals Increasing: _____

Intervals Decreasing:


Domain: _____

Range:

End Behavior:

$$as x \rightarrow \infty, f(x) \rightarrow \underline{\hspace{1cm}}$$

as
$$x \to -\infty$$
, $f(x) \to$

26.) A rectangular piece of cardboard is 15 inches longer than it is wide. If 5-inch squares are cut from each corner, and the remaining piece folded up to form a box, the volume of the box is 1250 cubic inches. Find the dimensions of the piece of cardboard.

27.)
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 4x + 3}$$

Hole(s): _____

Vertical Asymptote: _____

Horizontal Asymptote: _____

X-intercept(s): _______Y-intercept(s): ______

Domain:	_				+		-					\exists
Range:						1	-5					\dashv
$as x \rightarrow \infty, f(x) \rightarrow \underline{\hspace{1cm}}$	_											\exists
$as x \rightarrow -\infty, f(x) \rightarrow \underline{\hspace{1cm}}$						1	10					
,,(,,												
x												
f(x)												

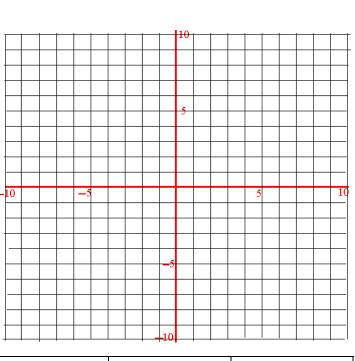
28.) $f(x) = \frac{8}{x^2 - x - 6}$

Hole(s): _____

Vertical Asymptote: _____

Horizontal Asymptote: ______

X-intercept(s): ______Y-intercept(s): _____


Domain: _____

Range: _____

$$as x \rightarrow \infty, f(x) \rightarrow \underline{\hspace{1cm}}$$

$$as x \rightarrow -\infty, f(x) \rightarrow \underline{\hspace{1cm}}$$

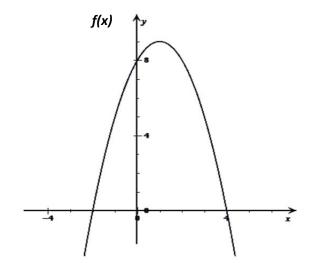
x			
f(x)			

Solve.

29.)
$$\frac{v-6}{2v^2+2v-4} + \frac{v}{2v-2} = \frac{1}{2}$$

30.)
$$\frac{5}{n^3+5n^2} = \frac{4}{n+5} + \frac{1}{n^2}$$

Perform the indicated operation.


31.)
$$\frac{m^2-2m-8}{8m+24} \div \frac{2m-8}{m^2+7m+12}$$

32.)
$$\frac{4x}{2x+2} \cdot \frac{x^2-6x-7}{x^2-7x}$$

33.)
$$\frac{2x+3}{5x-30} - \frac{3x+4}{x-6}$$

34.)
$$\frac{2c-8}{c^2+7c+12} - \frac{c-4}{c+3}$$

Use the following graph and table to answer questions 35 – 38. Assume g(x) is linear.

х	g(x)
-3	17
-1	11
1	5
3	-1

For 35 - 38, compare the following quantities, and fill in the blank with either <, >, or =.

35.)
$$f(0) = g(0)$$

36.)
$$f(-2) = g(-2)$$

37.) Max value of
$$f(x)$$
 _____ Max value of $g(x)$. (Use ONLY interval -5 \leq x \leq 5 for both functions.)

38.)
$$\frac{f(4)-f(0)}{4-0}$$
 _____ $\frac{g(4)-g(0)}{4-0}$