Part One - Identifying End Behavior

For each of the following identify the Lead Degree, the Lead Coefficient, and the End Behavior.

1.)
$$t(x) = 2x - 5$$

Name:

Leading Degree: Even or Odd

Leading Coefficient: Positive or Negative

End Behavior:

as
$$x \to \infty$$
, $t(x) \to$

as
$$x \to -\infty$$
, $t(x) \to$

2.)
$$a(x) = -3x^2 + 5x$$

Name: _____

Leading Degree: Even or Odd

Leading Coefficient: Positive or Negative

End Behavior:

$$as x \rightarrow \infty, a(x) \rightarrow \underline{\hspace{1cm}}$$

$$as x \rightarrow -\infty, a(x) \rightarrow \underline{\hspace{1cm}}$$

3.)
$$g(x) = -x^4 + 5x^3 + 7$$

Name:

Leading Degree: Even or Odd

Leading Coefficient: Positive or Negative

End Behavior:

as
$$x \to \infty$$
, $g(x) \to$

$$as x \rightarrow -\infty, g(x) \rightarrow \underline{\hspace{1cm}}$$

4.)
$$m(x) = -2x^5 - 3x^3 + 4$$

Name: _____

Leading Degree: Even or Odd

Leading Coefficient: Positive or Negative

End Behavior:

as
$$x \to \infty$$
, $m(x) \to$

as
$$x \to -\infty$$
, $m(x) \to$

5.)
$$n(x) = \frac{1}{2}x^6 + 2x^2 - 3x + 4$$

Name:

Leading Degree: Even or Odd

Leading Coefficient: Positive or Negative

End Behavior:

as
$$x \to \infty$$
, $n(x) \to$

$$as x \rightarrow -\infty, n(x) \rightarrow \underline{\hspace{1cm}}$$

6.)
$$f(x) = 2x^3 - 4x^2 + x - 3$$

Name:

Leading Degree: Even or Odd

Leading Coefficient: Positive or Negative

as
$$x \to \infty$$
, $f(x) \to$

as
$$x \to -\infty$$
, $f(x) \to$

Part Two – Sketching Polynomials

7.)
$$j(x) = 2x^3 - 9x^2 + 7x$$

of Solution(s): _____

							10						
							_						
							5						
							-			_		_	
_	10		- 5						- 5				10
-	10		- 5						5				10
	10		-5						5				10
	10		- 5						5				10
	10		_5						5				10
			_5			-5			5				10
			_5			-5			5				
			_5			_5			5				
			—5			5			5				10
			_5			-5			5				

Zero(s): _____

End Behavior:

as
$$x \to \infty$$
, $j(x) \to$

$$as x \rightarrow -\infty, j(x) \rightarrow \underline{\hspace{1cm}}$$

x		
j(x)		

8.) $n(x) = 3x^2 - 2/x^2$	8.)	$h(x) = 3x^4$	$-27x^{2}$
---------------------------	-----	---------------	------------

of Solution(s): _____

Zero(s): _____

$$as x \rightarrow \infty, h(x) \rightarrow \underline{\hspace{1cm}}$$

as x	$\rightarrow -\infty, h(x) \rightarrow \underline{\hspace{1cm}}$	
------	--	--

x		
h(x)		

9.)	b(x) =	$-x^4 - 16x^2$
,	~ (,,,	70 1070

of Solution(s): _____

			 						10	 	 	 		
									10					
•														
									5					
									Ĭ					
•														
		ı			ı	ı								
				-							_	_	_	10
	10			— 5							5			10
-	10			— 5							5			10
	10			- 5							5			10
	10			— 5							5			10
	10			- 5							5			10
	10			— 5				-5			5			10
	10			-5				-5			5			10
	10			-5				-5			5			10
	10			-5				-5			5			10
				-5				-5			5			10

Zero(s): _____

End Behavior:

$$as x \to \infty, b(x) \to \underline{\hspace{1cm}}$$

 $as x \to -\infty, b(x) \to \underline{\hspace{1cm}}$

x		
b(x)		

10.)
$$f(t) = 4t^3 - 5t^2 - 6t$$

of Solution(s): _____

Zero(s): _____

$$as x \rightarrow \infty, f(t) \rightarrow \underline{\hspace{1cm}}$$

as
$$x \to -\infty$$
, $f(t) \to$

t		
f(t)		

Part Three - Identifying Relative Maximums and Minimums

Given each of the polynomial functions below, sketch and identify the key information. (You may use your Calculator – Some key information may be off the graph)

11.)
$$f(x) = -x^3 + 5x^2 - 2$$

Lead Coefficient: Positive or Negative (circle one)

Even or Odd (Circle One) Degree:

Relative Maximum(s): _____

Relative Minimum(s): _____

Zero(s): _____

Y-intercept:

Interval Increasing:

Interval Decreasing: _____

End Behavior:

$$as x \rightarrow \infty, f(x) \rightarrow \underline{\qquad}$$

$$as x \to -\infty, f(x) \to \underline{\hspace{1cm}}$$

12.)
$$f(x) = x^4 - 13x^2 + 36$$

Lead Coefficient: Positive or Negative (circle one)

Even or Odd (Circle One) Degree:

Relative Maximum(s): _____

Relative Minimum(s): _____

Zero(s): _____

Y-intercept:

Interval Increasing: _____

Interval Decreasing: _____

$$as x \rightarrow \infty, f(x) \rightarrow \underline{\qquad}$$

 $as x \rightarrow -\infty, f(x) \rightarrow \underline{\qquad}$

Evaluate each of the polynomials.

13.) If
$$f(x) = 2x^2 - 3x + 2$$
 find $f(-3)$.

14.) If
$$f(x) = 2x^2 - 3x + 2$$
 find $f(m + 2)$.

15.) If
$$h(x) = -4x^{-3} + 4x^{-2}$$
 find $h(-2)$.

16.) If
$$h(x) = -4x^{-3} + 4x^{-2}$$
 find $h(2t^3)$.

Part Four – Sketching Polynomials

17.)
$$f(x) = (x-2)(x+2)^2(x+5)$$

of Solution(s): _____

Zero(s): _____

End Behavior:

$$as x \rightarrow \infty, f(x) \rightarrow \underline{\hspace{1cm}}$$

 $as x \rightarrow -\infty, f(x) \rightarrow \underline{\hspace{1cm}}$

$$18.) f(x) = 2x^3 - 32x$$

of Solution(s): _____

Zero(s): _____

$$as x \to \infty, f(x) \to \underline{\hspace{1cm}}$$

 $as x \to -\infty, f(x) \to \underline{\hspace{1cm}}$